Technical Note

GFZ/COST-G GravIS Level-3 Products (V. 0003)

Ice-Mass Change

Created: 14 April 2024

Prepared by:

Ingo Sasgen, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

Contact: ingo.sasgen@awi.de

Andreas Groh and Thorben Döhne, Technische Universität Dresden, Institut für Planetare Geodäsie

Contact: thorben.doehne@tu-dresden.de

1. Introduction

This Technical Note describes the processing scheme and product details of the Ice-Mass Change Level-3 products that are visualized at the GFZ web portal GravIS (http://gravis.gfz-potsdam.de) and provided at GFZ's data archive ISDC.

2. Data Product Details

Ice-mass change products are provided both as basin averages and as gridded products for (i) the Antarctic Ice Sheet (AIS), and (ii) the Greenland Ice Sheet (GIS); each individual file contains the complete available time series.

Filenames: **GRAVIS-3_yyyyddd-YYYYDDD_ccccc_rrrr_sss_tttt_iii_vvvv.xx**

where:

yyyyddd and YYYYDDD are the beginning and end epoch of the time series given as year and day of year (similar to the filenames of the Level-2/2B products)

ccccc is either GFZOP if the product is based on GFZ GRACE/GRACE-FO monthly gravity field models, or COSTG if the product is based on combined GRACE/GRACE-FO monthly gravity field models from COST-G

	rrrr is the corresponding 4-digit release number of the underlying monthly gravity field models (either 0600 for GFZ or 0100 for COST-G)	
	sss specifies the ice sheet (either AIS or GIS)	
	tttt specifies the type of product (either BAVE for basin average products or GRID for gridded products)	
	iii specifies the institute (either AWI for Alfred-Wegener-Institut or TUD for Technische Universität Dresden)xx is the file extension (either .nc, .tif or .asc)	
Format:	ASCII (basin average products), NetCDF, GeoTIFF (gridded products); note that the GeoTIFF product comes together with a PAM (persistent auxiliary metadata) file (.tif.aux.xml) holding the full metadata record	
Product links:	GFZ, AIS:	ftp://isdcftp.gfz-potsdam.de/grace/GravIS/GFZ/Level-3/ICE/AIS
	GFZ, GIS:	ftp://isdcftp.gfz-potsdam.de/grace/GravIS/GFZ/Level-3/ICE/GIS
	COST-G, AIS:	ftp://isdcftp.gfz-potsdam.de/grace/GravIS/COST-G/Level-3/ICE/AIS
	COST-G, GIS:	ftp://isdcftp.gfz-potsdam.de/grace/GravIS/COST-G/Level-3/ICE/GIS

3. Processing Details

3.1 Basin Average Products

Produced by: Ingo Sasgen (ingo.sasgen@awi.de)

Basin-average ice mass variations for the AIS and GIS are obtained from unfiltered GravIS Level-2B coefficients (http://gravis.gfz-potsdam.de/corrections), either for GFZ RL06 (Dahle et al., 2019) or COST-G RL01 (Dahle et al., 2020). The definition of 25 major drainage basins for the AIS and 7 drainage basins for the GIS, as well as the inversion procedure based on a forward modelling approach follows Sasgen et al. (2013) and Sasgen et al. (2012), respectively. The inversion procedure uses predefined spatial patterns of surface-mass change of known magnitude to calculate their regional imprint in the gravity field. In a second step, the regional patterns are filtered identically to GRACE observations and least-squares adjusted (scaled) to fit the observations in the spatial domain. Using the forward model localizes the mass change more towards the coast, leading to a more realistic mass distribution with each basin compared to assuming uniform mass distribution. The inversion results are weakly dependent on the choice of the mass distribution (< 10%), however, less prone to biases as the forward model and the GRACE data are subjected to the same post-processing procedure. For the time series presented here the following processing steps were applied:

- (I) Spectral masking of region of interest
- (II) Low-pass filtering using a Wiener optimal filter (Sasgen et al. 2006) constant in time

- (III) Conversion from gravity field to surface-mass changes using elastic compressible surface-load Love numbers
- (IV) Least-squares adjustment

The spectral mask is 1 until 200 km outside the grounding line of the ice sheet, following a smooth transition to 0 reached at 1000 km (AIS) or 600 km (GIS). The Wiener filter is approximately equivalent to a Gaussian filter of 4° spatial half-width.

3.2 Gridded Products

Produced by: Thorben Döhne (thorben.doehne@tu-dresden.de)

Gridded ice mass variations for the AIS and GIS obtained from unfiltered GravIS Level-2B coefficients (http://gravis.gfz-potsdam.de/corrections), either for GFZ RL06 (Dahle et al., 2019) or COST-G RL01 (Dahle et al., 2020), are provided at polar-stereographic grids with a grid spacing of 50km x 50km. The applied algorithm has been successfully used to generate gravimetric mass balance products within the ESA Climate Change Initiative (CCI) projects for the AIS and the GIS. A more comprehensive description of the algorithm and the error assessment of the products is given in Döhne et al. (2023) and Groh & Horwath (2021).

We derive tailored sensitivity kernels, i.e., averaging kernels to be used in the regional integration approach (Swenson & Wahr, 2002), for each grid cell covering the entire AIS/GIS. Each kernel realizes a trade-off between the following conflicting conditions, which aim to minimize spatial leakage (I, II) and GRACE/GRACE-FO errors (III):

- (I) Mass changes inside the cell will be correctly recovered
- (II) Mass changes outside the cell will have no impact on the grid cell
- (III) Propagated errors of the GRACE solutions have minimum influence on the mass change estimate of the cell

To solve for the spherical harmonic coefficients of each sensitivity kernel, a large number of condition equations, accounting for mass changes of the ice sheet as well as of the surrounding far-field regions, needs to be established. To control the propagation of the GRACE error effects, an error variance/covariance model for the GRACE monthly solutions is required. This model is expressed as an empirical variance/covariance matrix derived from the short-term month-to-month scatter of the monthly Level-2B products. The optimal weights for the conflicting conditions are chosen from a set of plausible combinations by assessing the noise level and leakage errors in the corresponding surface mass estimates. Leakage errors are derived from a range of synthetic data sets with a priori known true mass changes, mimicking mass variations in different compartments of the Earth system.

4. Citation

The GravIS ice-mass change Level-3 products are published as data publication via GFZ Data Services and should be cited as follows:

GFZ RL06 products:

Sasgen, I., Groh, A., Horwath, M. (2019): GFZ GravIS RL06 Ice-Mass Change Products. V. 0003. GFZ Data Services. http://doi.org/10.5880/GFZ.GRAVIS_06_L3_ICE

COST-G RL01 products:

Sasgen, I., Groh, A., Horwath, M. (2020): COST-G GravIS RL01 Ice-Mass Change Products. V. 0003. GFZ Data Services. http://doi.org/10.5880/COST-G.GRAVIS_01_L3_ICE

5. References

Dahle, C., Murböck, M. (2019): Post-processed GRACE/GRACE-FO Geopotential GSM Coefficients GFZ RL06 (Level-2B Product). V. 0003. GFZ Data Services. http://doi.org/10.5880/GFZ.GRAVIS_06_L2B

Dahle, C., Murböck, M. (2020): Post-processed GRACE/GRACE-FO Geopotential GSM Coefficients COST-G RL01 (Level-2B Product). V. 0003. GFZ Data Services. http://doi.org/10.5880/COST-G.GRAVIS_01_L2B

Döhne, T., Horwath, M., Groh, A., Buchta, E. (2023): The sensitivity kernel perspective on GRACE mass change estimates. Journal of Geodesy, 97(1), 11. https://doi.org/10.1007/s00190-022-01697-8

Groh, A., Horwath, M. (2021): Antarctic Ice Mass Change Products from GRACE/GRACE-FO Using Tailored Sensitivity Kernels. Remote Sensing, 13, 1736. https://doi.org/10.3390/rs13091736

Sasgen, I., Martinec, Z., Fleming, K. (2006): Wiener optimal filtering of GRACE data. Studia Geophysica et Geodaetica, 50, 4, p. 499-508. http://doi.org/10.1007/s11200-006-0031-y

Sasgen, I., van den Broeke, M., Bamber, J., Rignot, E., Sørensen, L., Wouters, B., Martinec, Z., Velicogna, I., Simonsen, S. (2012): Timing and origin of recent regional ice-mass loss in Greenland. Earth and Planetary Science Letters, 333-334, p. 293-303. https://doi.org/10.1016/j.epsl.2012.03.033

Sasgen, I., Konrad, H., Ivins, E., Van den Broeke, M., Bamber, J., Martinec, Z., Klemann, V. (2013): Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates. The Cryosphere, 7, p. 1499-1512. https://doi.org/10.5194/tc-7-1499-2013

Swenson, S., Wahr, J. (2002): Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J. Geophys. Res., 107(B9), 2193. http://doi.org/10.1029/2001JB000576